
Trajectory Planning and Assignment
in Multirobot Systems

Matthew Turpin, Nathan Michael, and Vijay Kumar

Abstract In this paper, we consider the problem of tasking large numbers
of homogenous robots to move to a set of specified goal locations, addressing
both the assignment and trajectory planning subproblems concurrently. This
is related to the standard linear Euclidean assignment problem except that
the solution to the trajectory generation subproblem must result in time-
parameterized trajectories and guarantee collision avoidance. We begin with a
centralized approach and derive an optimal centralized solution and study the
computational complexity. The main contribution of this paper, however, is a
decentralized algorithm with limited communication between neighbors that
guarantees collision-avoidance and overcomes the computational challenges of
the centralized method at the cost of suboptimal solutions. We demonstrate
the performance of the algorithm as the number of robots is increased to
tens of robots and the resulting increase in communication across neighbors
required for safe execution.

1 Introduction

We consider a system with N permutation invariant robots seeking M desired
goal locations in an n-dimensional Euclidean space where N ≥ M . This
paper seeks to find a computationally tractable algorithm to plan collision-
free agent trajectories such that each goal location is occupied by a robot
at a desired termination time. The agents’ homogeneity adds an additional
degree of freedom to the trajectory planning problem as compared to a system
with assigned goal locations. Some applications of these homogeneous robotic
systems include object manipulation [3, 10], localization [4], and satellite

Matthew Turpin, Nathan Michael, and Vijay Kumar
GRASP Laboratory, University of Pennsylvania, Philadelphia, PA

e-mail: {mturpin,nmichael,kumar}@seas.upenn.edu

{mturpin,nmichael,kumar}@seas.upenn.edu

2 M. Turpin, N. Michael, and V. Kumar

formation control [1]. In all these applications finding safe trajectories is
critical. Indeed, for our work on aerial robots operating in close proximity [14],
finding collision-free trajectories is very important since even near misses can
result in aerodynamic interactions which may cause catastrophic collisions.

Since we require each goal location to be occupied by a single agent at
the final time we must explicitly assign goals to robots. Fortunately, the
assignment problem occurs naturally in a number of disciplines including
distributed computing, operations research, as well as the problems already
mentioned and there has been significant study into solutions of the assign-
ment problem. How the cost function of this assignment is formulated deter-
mines whether it is a linear assignment or quadratic assignment problem.

For N = M , each possible assignment of robots to goals can be represented
by an N×N permutation matrix. The space of all possible assignments for the
N agent, N goal single agent to single goal is isomorphic to SN , or the group
of all permutations of every agent. To completely enumerate all possibilities
requires N ! operations.

In general, the process of matching goals to robots is a linear assignment
problem if the total cost to be minimized is the sum of individual transition
costs. The usual assignment strategy for multi-robot systems is solving the
linear assignment problem minimizing the sum of distance traveled [6, 13] and
will be considered in detail in Sect. 3.1. The well-known Hungarian Algorithm
[8] can solve the linear assignment problem in polynomial time.

Others have relaxed the linear assignment problem to find near optimal
solutions. [12] uses a heuristic to minimize the sum of Euclidean distance trav-
eled for a very simplified Euclidean linear assignment problem that grows in
O(N

5
6). [9] presents a hybrid method for the Euclidean assignment algorithm

for very large numbers of robots with both a global and local approach.There
has also been work in potential field algorithms [16] to solve the linear assign-
ment problem. Other potential field methods for controlling groups of robots
to goal destinations [11] or goal sets [2] have been developed. In general, these
gradient descent approaches lead to unpredictable trajectories, may take very
a long time to converge, and some do not guarantee all goals are satisfied. In
general, decentralized auction-based algorithms can be more expensive than a
centralized solution using the Hungarian algorithm when taking into consid-
eration the cost of communications and may require a centralized auctioneer.

The quadratic assignment problem extends the notion of the linear as-
signment problem by adding the notion of a flow to each assignment. Exact
solutions to the quadratic assignment problems are NP-hard but there are
numerous suboptimal assignment algorithms for the quadratic assignment
problem using Tabu search, simulated annealing, genetic algorithms, iterated
locally greedy search, and many more [5].

Solutions to this problem are especially difficult when collisions have to
be avoided. A centralized algorithm to create collision-free paths to solve
the assignment problem for 2-dimensional robots is reduced to the numerical
solution of roots of a complex polynomial in [7].

Trajectory Planning and Assignment in Multirobot Systems 3

!"#
$%#

!%#

!&#

!'#

$&#

$"#

(a)

!"#
$%#

!%#

!&#

!'#

$&#

$"#

()*+,-./#01//#

(b)

Fig. 1 For the locations of goals and agents in R2 in Fig. 1(a), the necessary obstacle free

area K is designated by the closed area in Fig. 1(b)

Graph search techniques like A? or D? that are extremely powerful for
finding collision-free paths do not scale well as the dimensionality of the con-
figuration space grows with the number of robots. The M? algorithm [15]
circumvents this difficulty by only resorting to searches in the joint space
when pairs of robots are in close proximity. Our approach is similar in spirit
to this work. However, we consider the continuous planning problem of in-
terchangeable agents, and our decentralized algorithm functions online.

2 Preliminaries

We define the sets N = {1, 2, . . . , N} and M = {1, 2, . . . ,M}. The location
of the ith robot is having radius R is specified by xi ∈ Rn:

xi(t) =
[
x1(t), x2(t), . . . , xn(t)

]
T, ∀i ∈ N

Similarly, the ith goal location is specified by gi ∈ Rn:

gi =
[
g1, g2, . . . , gn

]
T, ∀i ∈M

The minimum convex operating space that must be obstacle free to solve
this problem with straight line paths is defined by K ⊂ Rn, the Minkowski
sum of the convex hull of initial locations and goal locations with ball of
radius R:

K ≡ conv({xi(t0)
∣∣i ∈ N} ∪ {gj∣∣j ∈M})⊕ BR (1)

See Fig. 1 for a 2-dimensional pictorial example of K.
Similar to a permutation matrix, we define a binary relation to assign goals

to agents.

4 M. Turpin, N. Michael, and V. Kumar

φ :M→N

Accordingly we let φ be a N ×M assignment matrix so that φi,j = 1 if and
only if agent i is assigned to goal location j. Note that φ has the following
properties:

φi,j ∈ {0, 1} ∀i ∈ N , j ∈M
1N

Tφ = 1M
T

(2)

From this we know:
φTφ = IM

where IM is the M×M identity matrix. We will use the expanded assignment
matrix Φ ≡ φ⊗ In where ⊗ signifies the Kronecker product.

We then define the Nn-dimensional state vector, X ∈ RNn:

X(t) = [x1(t)T,x2(t)T, . . . ,xN (t)T]T.

where xi(t) ∈ K ∀i ∈ N . We similarly define the stacked goal state vector
G ∈ RMn:

G = [g1
T,g2

T, . . . ,gM
T]T

We distinguish between paths and trajectories where paths are time-
independent curves connecting current and final locations. This is in contrast
to trajectories, which are time-parameterized planned locations of the agents.
The goal of this paper is to find Nn-dimensional trajectories:

γ(t) : [t0, tf]→ X(t),

where t0 and tf are the initial and final times respectively.

The initial position xi(t0) ∀i ∈ N and the goal locations gj =
∑N
i=1 φi,jxi(tf)

have been specified so the boundary conditions are:

γ(t0) = X(t0)

ΦTγ(tf) = G
(3)

We define clearance δ as the minimum space between robots at any time
during the trajectory:

δ(t) = minimize
i,j∈N ,i6=j

||xi(t)− xj(t)|| − 2R

To ensure collision avoidance, we require the clearance to always be greater
than zero:

δ(t) > 0 t ∈ [t0, tf] (4)

Trajectory Planning and Assignment in Multirobot Systems 5

Problem Definition

The concurrent trajectory planning and goal assignment problem involves
finding a trajectory γ?(t) that minimizes a cost functional:

γ?(t) = arg min
γ(t)

∫ tf

t0

L(γ, γ̇, t)dt

subject to (2), (3), (4)

(5)

Assumptions

It is useful to reiterate the assumptions (A1-A3) we have made thus far and
introduce four new ones (A4-A7):

(A1) All agents are homogeneous and interchangeable with no preference
of goal destination.

(A2) Each agent is a set of points confined to BR, a ball with radius R.
(A3) There are no obstacles in K as defined in (1).
(A4) All agents are kinematic (ẋ = u) with no actuation error and a perfect

estimate of the state.
(A5) The initial and goal locations are spaced ∆ apart. In other words,
||xi(t0)− xj(t0)|| > ∆, and ||gi − gj || > ∆, ∀ i 6= j ∈ {1, . . . , N} where ∆
will be defined later. Clearly ∆ > 2R to ensure collision avoidance.

(A6) All robots are capable of exchanging information about their current
state and their assigned goals to other robots closer than distance h > ∆.
Robots with non-negligible communications time should ensure h >> ∆.

(A7) Each goal location is initially assigned to exactly one robot.

Assumptions (A1-A5) are required for the centralized algorithm that is dis-
cussed in the next section. (A6-A7) deal with the decentralized case presented
in Sect. 4.

3 Centralized Algorithm

We propose two different centralized cost functions for (5) which both seek
to simultaneously find an assignment matrix φ and collision free trajectories
γ(t) for all agents in the system such that each goal state is occupied by
an agent at t = tf . The centralized optimization only needs to be computed
initially at t = t0 as the solution for φ will not change over the interval [t0, tf].

6 M. Turpin, N. Michael, and V. Kumar

!!"!#

!$"$#

!$"!#

!!"$#
"$%&'(#

"!%&'(#
"!%&)(#

"$%&)(#

Fig. 2 For agents in n-dimensional Euclidean space (n > 2), if the paths collide as is the

case for straight lines along r1,2 and r2,1 do, we can see that using the triangle inequality,

switching assignments will always lead to collision free paths.

3.1 The Minimum Sum of Distances Trajectory

The first cost function we analyze is the current standard practice for the
location assignment problem of minimizing the sum of distances traveled by
all agents:

minimize
φ,γ(t)

N∑
i=1

∫ tf

t0

√
ẋi(t)

Tẋi(t)dt

subject to (2), (3), (4)

If we temporarily ignore clearance requirements, it is clear that the solution
reduces to positive progress on straight line paths for t ∈ [t0, tf]. Thus, this
problem reduces to:

minimize
φ

M∑
j=1

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

φi,jxi(t0)− gj

∣∣∣∣∣
∣∣∣∣∣

subject to (2), (3)

(6)

This is the well-known transportation assignment problem. We show below
in Theorem 1 that the assignment from this optimization guarantees paths
that never intersect in any n-dimensional Euclidean space (n > 2).

Theorem 1. The optimal assignment φ using the minimum sum of distance
optimization in (6) results in paths that do not intersect except for the special
case when a pair of agents have start and goal locations in a one dimensional
space.

Proof. Assume the paths of agents i and j intersect but do not all fall on
a line. These paths necessarily exist in a plane and therefore we can reduce
these two paths to an equivalent n = 2 problem. Since these paths intersect,
we know that switching the assignment will always reduce the sum of dis-
tances by using the triangle inequality and the given φ is not optimal for
(6). Therefore, the minimum assignment found in (6) will never result in
intersecting paths.

Unfortunately, we can show with a simple example that agents with fi-
nite extent using the assignment from (6) are not guaranteed collision free

Trajectory Planning and Assignment in Multirobot Systems 7

!"#$%&'(()"((

)*((

!"#$%&+,'((

!*#$%&'((

!*#$%&+,'((

-./(0.123/45((

!"#$%&'(()"((

)*((

!"#$%&+,'((

!*#$%&'((!*#$%&+,'((

(a)

!"#$%&'(()"((

)*((

!"#$%&+,'((

!*#$%&'((

!*#$%&+,'((

(b)

Fig. 3 For the example with two agents in Fig. 3(a) we can see that the minimum sum of
distances paths (calculated by (6)) never intersect. However, having intersection-free paths

does not guarantee collision-free trajectories for agents with finite size. In this case, merely
switching goal assignments as shown in Fig. 3(b) does ensure collision-free trajectories.

trajectories in Fig. 3, rendering this optimization useless for real robots with
physical extent.

3.2 The Minimum Velocity Trajectory

The second method we propose is to minimize the sum of the integral of
velocity squared traveled by all agents:

minimize
φ,γ(t)

N∑
i=1

∫ tf

t0

ẋi(t)
Tẋi(t)dt

subject to (2), (3), (4)

which is equivalent to:

minimize
φ,γ(t)

∫ tf

t0

Ẋ(t)TẊ(t)dt

subject to (2), (3), (4)

(7)

The paths returned from (7) will be identical to minimizing the sum of
distance traveled squared.

If it is unclear how the optimization in Sect. 3.2 differs from Sect. 3.1,
consider moving a contiguous block of a number of books each with identical
width to another contiguous block, but moved one book over and ignoring
collisions. One solution is to move the first book to the last position, where
another is to move each book one position over. Both schemes result in the
same sum of distance traveled, however moving each book one unit over
results in a lower sum of distances squared as a result of distance squared
being a strictly convex cost function. Notice that in the many smaller moves
solution, one book crossing another is unnecessary.

8 M. Turpin, N. Michael, and V. Kumar

If we temporarily ignore the clearance requirements in (4), (7) returns an
assignment matrix φ and trajectories:

γ?(t) =

(
1− t− t0

tf − t0

)
X(t0) +

(
t− t0
tf − t0

)(
ΦG + (INn − ΦΦT)X(t0)

)
(8)

It is clear that at t = t0, (8) satisfies γ?(t0) = X(t0). To verify the final
boundary conditions, we can premultiply (8) by ΦT:

ΦTγ?(t) =

(
1− t− t0

tf − t0

)
ΦTX(tc) +

t− t0
tf − t0

G

to verify ΦTγ?(tf) = G.
Now that we know that the trajectory will take the form in (8), we can

formulate (7) as a linear assignment problem and can use an optimal assign-
ment solving algorithm such as the Hungarian Algorithm or a suboptimal
algorithm. For hundreds of robots, as shown in [5], the Hungarian Algorithm
can be used to compute the exact solution of the assignment problem in un-
der a minute on a modest computer. We now demonstrate that if we take
∆ > 2

√
2R, the solution to (8) will be collision free.

For notational convenience, we define:

ri,j ≡ xj(tf)− xi(t0) ui,j ≡ xj(t0)− xi(t0)

wi,j ≡ xj(tf)− xi(tf) β(t) ≡ t− t0
tf − t0

∈ [0, 1]

We first prove a lemma related to the geometry of the optimal solutions.

Lemma 1. The optimal solutions to (7) satisfy:

wi,j
Tui,j ≥ 0 ∀i, j ∈ N (9)

Proof. Since we globally minimized the sum of integrated velocity squared
in (7), we know that switching goal states of agent i with agent j will not
decrease the sum of distance squared, or:

||ri,i||2 + ||rj,j ||2 ≤ ||ri,j ||2 + ||rj,i||2 ∀i, j ∈ N (10)

We then substitute:

||ri,j ||2 = ri,j
Tri,j = xj(tf)Txj(tf)− 2xi(t0)Txj(tf) + xi(t0)Txi(t0)

into (10) and simplify:

(xj(tf)− xi(tf))T(xj(t0)− xi(t0)) ≥ 0 ∀i, j ∈ N

or
wi,j

Tui,j ≥ 0 ∀i, j ∈ N (11)

Trajectory Planning and Assignment in Multirobot Systems 9

Theorem 2. If ∆ > 2
√

2R, trajectories in (8) will satisfy (4) and be collision
free.

Proof. The analytic solution for when agents i and j (i 6= j) will be closest
is:

β?i,j =
ui,j

T(ui,j −wi,j)

(ui,j −wi,j)
T(ui,j −wi,j)

If β?i,j is outside the range [0, 1], the agents are at a minimum at either the
start or end of the trajectory and the agents will not collide due to (A5). If
however, β?i,j ∈ [0, 1], the minimum distance agent i will be from agent j is:

||xi − xj ||min =

√
ui,j

Tui,j −
(ui,j

T(ui,j −wi,j))2

(ui,j −wi,j)
T(ui,j −wi,j)

(12)

As shown in Lemma 1, the assignment returned from (7) guarantees ui,j
Twi,j >

0 for all pairs of robots. Using this fact, we can see from (12) that the min-
imum distance possible between two robots will occur when ui,j

Twi,j = 0.
Further if ||ui,j || and ||wi,j || are each allowed to be as small as possible which
we called ∆ in (A5), the minimum distance encountered using the assignment
returned from (7) is:

||xi − xj ||min =
∆√

2

Since ∆ > 2
√

2R, we can rearrange and substitute to find the smallest dis-
tance between agents:

√
2||xi − xj ||min = ∆ > 2

√
2R

||xi − xj ||min > 2R

Thus the robots can never be in the ball of another robot and collision avoid-
ance is guaranteed.

It should be noted that minimizing the sum of distance traveled squared
arrives at the collision free assignment in Fig. 3(b).

4 Decentralized Algorithm

In this section, we exploit our knowledge of the centralized solution proposed
in Sect. 3.2 to formulate a computationally-tractable, online, decentralized
algorithm which will guarantee collision free paths for all robots. The decen-
tralized method takes inspiration from (11) and is based on reassignment of
goal locations to arrive at a locally-optimal solution.

As a result of robots communicating with neighboring robots within the
communications range h, a moving robot can constantly be encountering

10 M. Turpin, N. Michael, and V. Kumar

new neighbors, and therefore learn new information about its neighbors, and
by extension, information from its neighbors’ neighbors and so on. The key
feature of this algorithm is for every message sent, the system is locally mini-
mizing a modified version of the cost functional in (7). Before we present the
decentralized algorithm, Algorithm 1, we first introduce some new notation.

As there is no centralized bookkeeper, φ is no longer known to any one
robot. Therefore we define fi as the goal currently assigned to robot i, if it
exists, such that:

N∑
i=1

φi,jfi = gj

We now define the proximity set Ci(t) as a list of all robots within the
communications range of agent i at time t:

Ci(t) = {j | ‖xj(t)− xi(t)‖ ≤ h} ⊂ N (13)

We define the update list Ui(t) ⊂ Ci(t) as the list of robots to which robot i
will attempt to send new information.

We will use tc to denote the current time of computation such that t0 ≤
tc < tf . We also modify the definitions of ui,j and ri,j :

ri,j ≡ xj(tf)− xi(tc) ui,j ≡ xj(tc)− xi(tc)

In the decentralized algorithm (Algorithm 1), the ith robot locally mini-
mizes the contribution to (7) from every pair of i and j that satisfy (13):

minimize
fi,fj ,γ(t)

∫ tf

tc

ẋi(t)
Tẋi(t)dt+

∫ tf

tc

ẋj(t)
Tẋj(t)dt (14)

The trajectory for the remaining time [tc, tf] is computed in a similar fashion
to the centralized version (8):

xi(t) =

(
1− t− tc

tf − tc

)
xi(tc) +

(
t− tc
tf − tc

)
fi if fi exists

xi(t) = xi(tc) otherwise

(15)

We do not actively control robots without assigned goal states and as such are
unconcerned with their final locations, only that the vehicles do not collide.

Note that Algorithm 1 ensures only new information is transmitted to the
robots in Ci(t) without making unnecessary communications. Using similar
reasoning to Lemma 1, we will show in Lemma 2 that Algorithm 1 converges
to a locally optimal solution to (7).

Lemma 2. A change in goal locations between any pair of robots i and j in
Algorithm 1 results in a decrease of the sum of distance remaining squared.

Trajectory Planning and Assignment in Multirobot Systems 11

Algorithm 1 Goal Assignment of Agent i
compute trajectory using (15)
initialize Ui = Ci(t0)

while t < tf do

tc ← t
for j ∈ Ui do

request xj(tc) and fj from agent j

if fi exists AND fj does not exist AND ||xi − fi|| > ||xj − fi|| then
reassign fi to fj
set Ui = Ci(tc) and recompute trajectory using (15)

else if fi does not exist AND fj exists AND ||xi − fj || < ||xj − fj || then
reassign fj to fi
set Ui = Ci(tc) and recompute trajectory using (15)

else if both fi and fj exist AND ui,j
Twi,j < 0 then

exchange goal states fi and fj
set Ui = Ci(tc) and recompute trajectory using (15)

remove j from Ui
if agent j requests a change of fi then

update fi
set Ui = Ci(tc) and recompute trajectory using (15)
remove j from Ui

if agent j is added to Ci(tc) then

add agent j to Ui
if agent j is removed from Ci(tc) then

ensure j /∈ Ui

Proof. We show that when a pair of robots exchange goals locations, the
sum of distance remaining for those two agents decreases. All other robots
are unaffected by the trade so the total sum of distance remaining squared
decreases for the whole system.

Case 1: Both robots have assigned goals.
After two robots trade their assigned goals, we have:

ui,j
Twi,j > 0

Using algebra similar to that in Lemma 1, we find that:

||ri,i||2 + ||rj,j ||2 < ||ri,j ||2 + ||rj,i||2

In other words, the sum of remaining distance squared has decreased from
the value before the reassignment and the re-planning.

Case 2: Either fi or fj don’t exist. After reassignment of a goal from agent
j to agent i:

||xi(tc)− fi|| < ||xj(tc)− fi|| → ||xi(tc)− fi||2 < ||xj(tc)− fi||2

12 M. Turpin, N. Michael, and V. Kumar

After reassignment of a goal from agent i to agent j:

||xj(tc)− fj || < ||xi(tc)− fj || → ||xj(tc)− fj ||2 < ||xi(tc)− fj ||2

Thereby showing that the sum of distance remaining squared has decreased
from the original assignment.

Theorem 3. Algorithm 1 results in each goal being occupied by one robot
without any collisions.

Proof. Define the cost-to-go function V :

V =

M∑
i=1

||xi − fi||2 (16)

For an arbitrarily small constant, ε, we can use Lemma 2 and the trajectories
defined in (15) to see that V is strictly decreasing:

V (t+ ε) < V (t)

Further, by (15), the final value of the cost-to-go function will be zero:

V (tf) = 0.

From Theorem 2, we know all trajectories will be free of collisions.

It should be noted that for the decentralized algorithm, there exist initial
conditions which, resulting from the meeting of disconnected groups of robots,
could potentially result in a collision. However, there were no instances of
this pathological failure mode in millions of randomly generated simulations.
Instead, artificial construction was required to experience the failure. Due to
the extremely low likelihood of occurrence in a real world system, we defer
detailed analysis of this failure case to a future work which will present our
solution to this failure modality.

5 Simulation Results

We simulate our algorithm on a large variety of boundary conditions to study
its performance. For each trial, we randomly generate starting and goal lo-
cations that satisfy (A5).

The first simulation is shown in Fig. 4 and demonstrates the functioning of
the on-line decentralized algorithm for N = 7 robots M = 5 goal destinations
in a 2-dimensional space with a small communications range h = 1.2∆.

The second result shown in Figure 5 is to verify that the energy function
defined in (16) is indeed strictly decrescent by using a simulation with N =

Trajectory Planning and Assignment in Multirobot Systems 13

(a) (b) (c)

(d)

Fig. 4 Figs. 4(a)-4(c) show snapshots of a representative 2-dimensional simulation with

N = 7, M = 5 and limited communications range. In Figs. 4(a)-4(c), dotted lines represent
expected trajectory, solid lines represent the path followed, stars are goal locations, boxes

are initial locations, and communications range h is denoted by the translucent area. For

comparison, Fig. 4(d) shows the optimal solution to the centralized problem with dotted
lines.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Nondimensionalized Time

C
os

t
To

G
o

V

Fig. 5 Visualization of decay of the cost-to-go function V in (16) for N = 100,M = 50,

and n = 3. The instantaneous drops are a result of reassignments and the continuous decay

is a result of trajectory tracking.

M = 100 in three dimensions with h = 1.5∆. It can be easily seen that V̇ < 0
and V (tf) = 0.

In the third set of simulation runs we explore the scaling of the decentral-
ized algorithm with the number of robots. In Fig. 6, we vary N = M from 2
to 50 and present the result for 100 trials with h

∆ >> 1 in three dimensions
(n = 3). We compare the sum of distance traveled squared to the optimal
value returned from (7) using the Hungarian Algorithm. We also note that
the number of reassignments increases approximately linearly in N . We can
see that the total number of communications grows almost exactly as N2.

14 M. Turpin, N. Michael, and V. Kumar

1

1.1

1.2

1.3

1.4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Agents (N=M)

Su
bo

pt
im

al
ity

(a)

0

50

100

150

200

250

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Agents (N=M)

N
um

be
r o

f R
ea

ss
ig

nm
en

ts

(b)

0

2000

4000

6000

8000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Agents (N=M)

N
um

be
r o

f M
es

sa
ge

s
Se

nt

(c)

Fig. 6 Box plots for the properties of the decentralized algorithm for 100 simulated ran-

dom configurations and assignments for N agents and M = N goals. Figure 6(a) shows the

distance traveled squared divided by the optimal value returned from the centralized solu-
tion in Sect. 3.2. The “+” marks designate statistical outliers. These plots are for n = 3.

The final set of simulations can be seen in Fig. 7 where varied communica-
tions ranges are used for N = M = 20. The communications range is varied
from the minimum value of h

∆ = 1 through large values (h∆ >> 1). Note
that the number of messages sent decreases as the communications range de-
creases at the cost of becoming quite suboptimal. Additionally, we see that
minimum clearance δ between robots decreases with smaller communications
ranges as one might expect, but never violates the clearance requirement in
(4).

6 Conclusion and Future Work

In this paper, we have addressed the problem of concurrently assigning goals
and planning trajectories to the goals for a team of N robots with M ≤ N
destinations. The centralized assignment and planning problem is well known

Trajectory Planning and Assignment in Multirobot Systems 15

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 Inf
h/

N
um

be
r o

f M
es

sa
ge

s
Se

nt
(a)

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 Inf
h/

M
in

im
iu

m
 C

le
ar

an
ce

 (
m

in
/R

)

(b)

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 Inf
h/

Su
bo
pt
im
al
ity

(c)

Fig. 7 Box plots for the properties of the decentralized algorithm for 100 simulated random

configurations with varying communications distances with N=M=20. Figure 7(a) clearly
shows that as the communications range decreases, the number of messages sent in the

decentralized algorithm drastically decreases at the expense of clearance in Fig. 7(b) as

well as the optimality of the solution in 7(c). The clearance requirement in (4) is never
violated. “+” marks designate statistical outliers.

in the literature. However, the same problem applied to robots with finite size
and requirements of collision-free trajectories introduces challenges. We first
develop a centralized solution to the problem of assigning goals and planning
trajectories that minimize a cost functional based on the square of veloc-
ity along the trajectory and show that the resulting trajectories are globally
optimal and safe. The second contribution of the paper is a decentralized al-
gorithm that relies on the robots exchanging information about their current
state and their intended goal when they are within communication range.
The algorithm requires local reassignment and re-planning across a pair of
robots when maximum distance traveled can be reduced while simultaneously
increasing minimum clearance. We show this algorithm yields suboptimal as-
signments but safe trajectories. The performance of the algorithm improves
with the density of the robots requiring more reassignments but with a net
cost that is closer to the globally optimal cost. The computational complexity
of Algorithm 1 scales very well when applied to large swarms where the num-
ber of communications is proportional to ratio of the communications radius
h times the spatial density of robots. From simulations, it appears that the
number of reassignments necessary scale linearly with N and the number of
messages exchanged quadratically with N .

Our current work addresses incorporating the dynamics of robots and ex-
tending the cost functional L to include higher order time derivatives of

16 M. Turpin, N. Michael, and V. Kumar

trajectories. We are also interested in adapting the decentralized algorithm
to consider robot failures.

References

1. Beard, R., Lawton, J., Hadaegh, F.: A coordination architecture for spacecraft forma-
tion control. Control Syst. Technol., IEEE Transactions on 9(6), 777–790 (2001)

2. Chaimowicz, L., Michael, N., Kumar, V.: Controlling swarms of robots using interpo-

lated implicit functions. In: Proc. of the IEEE Int. Conf. on Robotics and Automation,
pp. 2487–2492. IEEE, Barcelona (2005)

3. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based

formation control framework. Robotics and Automation, IEEE Transactions on 18(5),
813–825 (2002)

4. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative
multi-robot localization. Autonomous Robots 8(3), 325–344 (2000)

5. Gerkey, B., Matarić, M.: A formal analysis and taxonomy of task allocation in multi-

robot systems. The International Journal of Robotics Research 23(9), 939–954 (2004)
6. Ji, M., Azuma, S., Egerstedt, M.: Role-assignment in multi-agent coordination. Int.

Journal of Assistive Robotics and Mechatronics 7(1), 32–40 (2006)

7. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot for-
mations. Robotics, IEEE Transactions on 22(4), 650–665 (2006)

8. Kuhn, H.: The hungarian method for the assignment problem. Naval Research Logistics

Quarterly 2(1-2), 83–97 (1955)
9. Liu, L., Shell, D.: Multi-level partitioning and distribution of the assignment prob-

lem for large-scale multi-robot task allocation. In: In Proc. of Robotics: Science and

Systems. Los Angeles, CA (2011)
10. Mataric, M., Nilsson, M., Simsarin, K.: Cooperative multi-robot box-pushing. In:

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 556–561.
Pittsburgh, PA (1995)

11. Molnár, P., Starke, J.: Control of distributed autonomous robotic systems using prin-

ciples of pattern formation in nature and pedestrian behavior. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 31(3), 433–435 (2001)

12. Rendl, F.: On the euclidean assignment problem. Journal of Computational and Ap-

plied Mathematics 23(3), 257–265 (1988)
13. Smith, S., Bullo, F.: Target assignment for robotic networks: Asymptotic performance

under limited communication. In: Proc. of the American Control Conference, pp.

1155–1160. IEEE, New York (2007)
14. Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive

formation flight with quadrotors. In: Proc. of the Intl. Sym. on Robotics Research.

Flagstaff, AZ. (2011)
15. Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with

performance bounds. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 3260–3267. San Francisco, CA (2011)

16. Zavlanos, M., Pappas, G.: Potential fields for maintaining connectivity of mobile net-
works. Robotics, IEEE Transactions on 23(4), 812–816 (2007)

	Trajectory Planning and Assignment in Multirobot Systems
	Matthew Turpin, Nathan Michael, and Vijay Kumar
	Introduction
	Preliminaries
	Centralized Algorithm
	The Minimum Sum of Distances Trajectory
	The Minimum Velocity Trajectory

	Decentralized Algorithm
	Simulation Results
	Conclusion and Future Work
	References

